Aggregating Watershed Restoration Efforts for Measurable Ecosystem Improvements

The World We Live In? Drivers for our Work?

(←) → C' @	🛛 🔒 https://www.chesaj	peakebay.net/what/progra	ams/total_maximum_daily_load	▣ … ♡ ☆			III\ 🗉 😩		
🌣 Most Visited 🧕 Getting Starte	d								
	Chesape Science. Resto	ake Bay oration. Part	Program	searc	ch			Q	
	Discover the Chesapeake		State of the Chesapeake	Take Action		Who We Are	What We Do		

WHAT WE DO > PROGRAMS & PROJECTS > CHESAPEAKE BAY TMDL

Chesapeake Bay TMDL

The Chesapeake Bay Total Maximum Daily Load (TMDL) is a federal "pollution diet" to restore the Chesapeake Bay and its vast network of streams, creeks and rivers.

y 🖂 f

What Are Your Goals?

How Do You Achieve Them?

What Are Your Goals?

 Reduce: Sediment Pathogens Nitrogen and Phosphorous Pollution Flooding & Excessive Runoff Temperature Removal of Impaired Status – Clean Water Act Wild Trout

Wild Brook Trout?

What Are Your Goals?

How Do You Achieve Them?

What will we do or change?

WATER RESEARCH CENTER

Improved Crop Field Management

Stabilize Roadway

What will we do or change?

/ Improve Pasture Management

Plant Forest Buffer

Exclude Livestock From Stream

Stop Barnyard Runoff Manure Storage

What will we impact?:

- Bacteria
- Sediment
- Water Temp
- Infiltration/Hydrolo gy
- Soil Carbon?
- Macroinvertebrates
- Fish
- Algae

Problem Barnyard

Improved Barnyard

Lititz Run – Before Forest Buffer

Lititz Run - 18 Year Old Forest

Other Measurable Outcomes?:

- Milk Production
- Herd Health
 - Infectious Disease
 - Hoof Problems

Happy & Healthy Cows

What Are Your Goals?

A STATES

- Reduce:
 - Sediment
 - Pathogens
 - Nitrogen and Phosphorous
 Pollution
 - Flooding & Excessive Runoff
- Removal of Impaired Status Clean Water Act
- Wild Trout

Typical Farm Project How Much Change is Enough?

How Many Farms is Enough?

Lancaster Mill Creek Section 1

13 Parcels 11 farms

ZAN

The Role of Modeling

Model My Watershed

hodel My Watershed

Select Area

Explore mapped layers, such as streams, land cover, soils, boundaries and observations, using the layer selector in the lower left of the map. See our documentation on layers.

Select an Area of Interest in the continental United States, using the suite of tools below, to analyze the factors that impact water in your area and to begin to model different scenarios of human impacts. Different modeling options for using these tools are described in the technical documentation.

Select boundary

Choose a predefined boundary from several types

Draw area

Free draw an area or place a square kilometer

Delineate watershed

Automatically delineate a watershed from any point

Upload file

Upload a polygon for your area

🐱 Landis Logan SI	ides.pptx Powe 🗙	M Pix - mehr	hart@stroudcenter.or X	5 Stroud Water Research Center X	Sector Model My Watershee	+ × +			- 0 ×
€) → ℃ 6	<u>۵</u>	() 💋 🤮	https://modelmywat	ershed.org/project/				⊘ ☆	<u>↓</u> III\ 🗊 =
🌣 Most Visited 🌘	🥑 Getting Started								
hodel My 🕅	Watershed®								About Help Projects Login
Untitled Pro	oject 🗸 📱) Details		Ar	nalyze Monitor	Model			New Project
Current Conc	ditions 📥 🗄	xport GMS							• Add changes to this area
Hydrology Water	Quality			22.20	pringdet	+ ma	Aller 1		2 - miletanaselsa
Sources 🔶	Sediment (kg)	Total Nitrogen 🔶 (kg)	Total Phosphorus 🔶 (kg)	XTX	à	17	x X	W. Dop Run King -	377
Hay/Pasture	57,209.4	252.2	98.1	X LI	Y IT	1/1	1XX	Unionville	Marlboro
Cropland	369,987.6	1,285.0	429.5	111	L L .	~ 1 3	4 213	3141	E X
Wooded Areas	558.7	8.1	0.9	Green	awny T	YT	A spland	mandel &	
Wetlands	150.1	13.4	0.8	an my	Clonmell	-110	VX VX	MTN.	La Concentration
Open Land	101.3	1.5	0.1	1: -1 -1		my y	VIII	1 - 4-1	
Barren Areas	0.0	0.0	0.0		173	242	K X Y	1 my	JWittowdale - 7
Low-Density Mixed	45.3	1.0	0.1	eike	1. 22x	Woodviti	. Fret.Rg	53725	P. LIT
Medium- Density Mixed	14.7	0.2	0.0	51825	L SHARE KU	15, 4	AL.T	JUX	
High-Density Mixed	0.0	0.0	0.0	Layers	VX Y	Y I Frank		-272	1 XL
Low-Density Open Space	729.3	15.5	1.7	Streams	hatham	TY	SK	1)[e. The
Farm Animals	0.0	966.6	220.9	Continental US Medium Resolution Stream Network	12V	m	the has	T TUST	ant the 27
Stream Bank Erosion	33,401.0	21.0	9.0	Delaware River Basin High Resolution Stream Network	T	115	SENT	St yr	Kennett Sqt are
Subsurface Flow	0.0	13,049.1	116.9	Dolawara Divar Basin TN	ant	V.	yer,	~ 2, 100	
Point Sources	0.0	23.4	3.0			Bakers 2	the tar +	Leaflet Map data © OpenStreetMap o	contributors, CC-BY-SA, Imagery © Mapbox
		Downloads	0 Inbox - G Suite	e 🔀 RE: restoration 🐥 21 R	eminders	🍢 📉 💄	O Model My Wate	📑 🖉 🚢 😘 🖸 🤿 🧔 👂	€ 8:37 PM ↓ ↓× 2/25/2019 ↓

WATER RESEARCH CENTER

MapShed PRP Default Rate, BANCS Results, and DEM Differencing

BMP Number	Default Rate Estimated in TMDL Plan at 115 Ib/ft (tons/yr)	BANCS Method (tons/yr)	Watershed DEM Differencin g Erosion ± Error (tons/yr)	Watershed DEM Differencing Erosion Error Percentage (%)	
4	57.5	18.6	6.1 ± 2.4	39.4%	
5	66.1	68.9	9.5 ± 2.0	20.8%	
9	193.7	206.9	33.4 ± 12.6	37.8%	
10	115.0	62.7	-72.2 ± - 13.9*	-19.3%*	
12	103.5	25.8	10.2 ± 2.8	27.2%	

*Net Deposition

Courtesy Mike Hickman, Center for Watershed Protection

West Branch Brandywine Creek - Honeybrook LANCASTER 23 JESTER ~ 15.1 mi² (39.2 km²) Watershed area Stream length 40.7 miles without buffer miles Designation HQ - TSF Status Impaired Unimpaired **Restoration goal** Honeybrook (පිදා) \square Potential Restoration Wtsds Streams (Chester Co. data) Local Rds (2011) Stream Order 6 State Rds (2011) 1 Counties ⊐.km 1.25 2.5

Conservation Plan

Manure Management Plan

"Level-lip spreader" located behind Stroud Water Research Center before construction

Level-lip spreader during construction

Level-lip spreader during construction

Level lip spreader after construction

"Level-lip spreaders" are shallow conservation swales built along the contour of the slope that collect surface runoff during rainstorms. With most storms the water that is collected will infiltrate into the ground, sediments settle out, and the water flows as groundwater to the stream. In big storms the water will flow over the level-lip evenly into the streamside forest before reaching the stream. Level-lip spreaders help reduce flooding and prevent nutrients and sediments from reaching the stream. These swales are being designed by Chester County Conservation District in partnership with the Stroud Center.

Planted Apr 2007 Photo Aug 2008

Spring 2014

Flood Storage

Level Lip Spreaders and Wetland storage totals over 9,200 m³ of storage That's approximately 25% of a 2 inch, 24 hour storm event

How Do Other Factors Impact Flood Storage and Timing?

Conserving Water Quantity and Quality by Improving Soil Health

Photo: Kelley King, King Photography

Field 6.1 No cover crop

Links - Marches Threadown al ann a mhe Died e sharede e mil e e alle fi

Field 6.2 Yes cover crop

3x-4x Increase in Water linfiltration

Pristine?

What Are Your Goals?

How Do You Achieve Them?

Current Conditions and Progress Toward Restoration Goals

Brandywine Headwaters White Clay Creek Red Clay Creek Plum Run

What Makes the DRWI Unique?

Prioritized Measurable Outcomes

What Makes the DRWI Unique?

Prioritized Measurable Outcomes

- Defining and Quantifying Goals
- Aggregating Effort
- Monitoring Progress and Outcomes

THINK 1

What is the Restoration Goal?

Can it be Quantified?

Monitoring

Has the Restoration Goal Been Reached?

What is the Rate of Change?

After

Brandywine Christina Cluster

Each focus area is different

Brandywine Headwaters Focus Area

White Clay Creek Focus Area

Red Clay Creek Focus Area

Plum Run Focus Area

Annual Progress Agricultural Land Cover (Acres) Brandywine Christina Cluster 0+ Pre DRW 20¹⁵ 20¹⁰ 20¹¹ 20¹⁰ 4¹¹10 2014

Year BMP Installation Began

Cumulative Progress

Headwaters WB Brandywine Cr

> 48 km² 29 km of stream

High Quality Trout Stocking Fishery

Impaired

Goal is Unimpaired

Headwaters WB Brandywine Cr

> 48 km² 29 km of stream

High Quality Trout Stocking Fishery

Impaired

Goal is Unimpaired Existing projects as % of agricultural lands

Headwaters WB Brandywine Cr

> 48 km² 29 km of stream

High Quality Trout Stocking Fishery

Impaired

Goal is Unimpaired

Valley Creek Tributary to Susquehanna River 10 km²

3.5 km of stream

Apr 1999

CHESAPEAKE BAY FOUNDATION Saving a National Treasure

Aug 2016

Fair

Poor

White Clay Creek

43 km² 34 km of stream

Exceptional Value Cold Water Fishery

Impaired

Goal is Unimpaired & Wild Trout

White Clay Creek

43 km ² 34 km of stream

Exceptional Value Cold Water Fishery

Impaired

Goal is Unimpaired & Wild Trout

White Clay Creek

43 km² 34 km of stream

Exceptional Value Cold Water Fishery

Impaired

Goal is Unimpaired & Wild Trout

Headwaters BC White Clay Creek Red Clay Creek Plum Run

2,927 tons of sediment per year

8,953 lbs of <u>phosphorus</u> per year

https://www.drawingtutorials101.com/how-to-draw-simple-dump-truck

https://feedyardfoodie.wordpress.com/2013/03/28/march-madness/

Headwaters BC White Clay Creek Red Clay Creek Plum Run

293 truckloads sediment per year

https://www.drawingtutorials101.com/how-to-draw-simple-dump-truck

https://feedyardfoodie.wordpress.com/2013/03/28/march-madness/

Summary

Project progress is strong (27 – 44% complete in some areas)

Current conditions support Focus Area goals – unimpaired vs wild trout

Too early to see ecological outcomes – need more projects and time

Matthew J. Ehrhart Director of Watershed Restoration Stroud Water Research Center

mehrhart@stroudcenter.org 610 268 2153 ext 308

Current Conditions and Progress Toward Restoration Goals

Middle Schuylkill Cluster Licking Creek Spring Creek Manor Creek Rice Tributary

Middle Schuylkill Water Monitoring

US Army Corps of Engineers

ENVIRU

AL PROTECT

Monitoring is like traveling.

There are lots of ways to do it.

They all serve a purpose.

But they are not all equal.

Data Challenges/Lessons Learned

Source water concerns may ≠ Restoration goals

Regulatory requirements may ≠ Restoration goals

Engagement events may ≠ Restoration monitoring

Project monitoring may ≠ Focus Area monitoring

Data Challenges/Lessons Learned

Site matters

Season matters

Variable measured matters

Rigor matters

Cumulative Progress

Licking Creek in Tulpehocken

4 km² 3.7 km of stream <u>29% forest</u> 45% pasture 20% row crop

Trout Stocking Fishery

UnImpaired

Goal is Cold Water Fishery

Spring Creek in Tulpehocken

10 km² 6.8 km of stream <u>23% forest</u> 43% pasture 23% row crop

Trout Stocking Fishery

Unimpaired?

Goal is improved Trout Stocking Fishery

Tulpehocken Tributaries

Valley Creek Tributary to Susquehanna River 10 km²

3.5 km of stream

Apr 1999

CHESAPEAKE BAY FOUNDATION Saving a National Treasure

Aug 2016

Stream Recovery After Farm Restoration

Comparison of stream condition 2000 versus 2016

Tulpehocken Tributaries

Maiden Trib @ Rice Farm

1 km² 6.8 km of stream 5% forest 47% pasture 31% row crop

Cold Water Fishery

Unimpaired?

Goal is improved Cold Water Fishery

Maiden Trib @ Rice Farm

1 km² 6.8 km of stream <u>5% forest</u> 47% pasture 31% row crop

Cold Water Fishery

Unimpaired?

Goal is improved Cold Water Fishery

Manor Creek in Maiden

17 km² 5.8 km of stream <u>52% forest</u> 26% pasture 18% row crop

Cold Water Fishery

Unimpaired

Goal is improved Cold Water Fishery

Maiden Tributaries

Maiden Tributaries

Middle Schuylkill Cluster Phase 1 & 2

6,294 tons of sediment per year

17,910 lbs of phosphorus per year

https://www.drawingtutorials101.com/how-to-draw-simple-dump-truck

https://feedyardfoodie.wordpress.com/2013/03/28/march-madness/

Middle Schuylkill Cluster Phase 1 & 2

629 truckloads sediment per year

448 truckloads <u>manure</u> per year

https://www.drawingtutorials101.com/how-to-draw-simple-dump-truck

https://feedyardfoodie.wordpress.com/2013/03/28/march-madness/

877 truckloads sediment and manure per year

8770 truckloads sediment and manure in years

5.1 miles of trucks line up bumper-to-bumper per year

51 miles of trucks over 10 years

<u>Summary</u>

- Project progress is strong (45 – 61% complete in some areas)
- ➤Current conditions may support higher Focus Area goals – unimpaired → cold water fishery → wild trout

Too early to see ecological outcomes – need more projects and time

Matthew J. Ehrhart Director of Watershed Restoration Stroud Water Research Center

mehrhart@stroudcenter.org 610 268 2153 ext 308

